Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells
نویسندگان
چکیده
Flat carbon anodes placed near a cathode in a microbial fuel cell (MFC) are adversely affected by oxygen crossover, but graphite fiber brush anodes placed near the cathode produce high power densities. The impact of the brush size and electrode spacing was examined by varying the distance of the brush end from the cathode and solution conductivity in multiple MFCs. The startup time was increased from 8 ± 1 days with full brushes (all buffer concentrations) to 13 days (50 mM), 14 days (25 mM) and 21 days (8 mM) when 75% of the brush anode was removed. When MFCs were all first acclimated with a full brush, up to 65% of the brush material could be removed without appreciably altering maximum power. Electrochemical impedance spectroscopy (EIS) showed that the main source of internal resistance (IR) was diffusion resistance, which together with solution resistance reached 100 . The IR using EIS compared well with that obtained using the polarization data slope method, indicating no major components of IR were missed. These results show that using full brush anodes avoids adverse effects of oxygen crossover during startup, although brushes are much larger than needed to sustain high power. © 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Evaluation of multi-brush anode systems in microbial fuel cells.
The packing density of anodes in microbial fuel cells (MFCs) was examined here using four different graphite fiber brush anode configurations. The impact of anodes on performance was studied in terms of carbon fiber length (brush diameter), the number of brushes connected in parallel, and the wire current collector gage. MFCs with different numbers of brushes (one, three or six) set perpendicul...
متن کاملIon exchange membrane cathodes for scalable microbial fuel cells.
One of the main challenges for using microbial fuel cells (MFCs) is developing materials and architectures that are economical and generate high power densities. The performance of two cathodes constructed from two low-cost anion (AEM) and cation (CEM) exchange membranes was compared to that achieved using an ultrafiltration (UF) cathode, when the membranes were made electrically conductive usi...
متن کاملAltering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances
A better understanding of how anode and separator physical properties affect power production is needed to improve energy and power production by microbial fuel cells (MFCs). Oxygen crossover from the cathode can limit power production by bacteria on the anode when using closely spaced electrodes [separator electrode assembly (SEA)]. Thick graphite fiber brush anodes, as opposed to thin carbon ...
متن کاملGraphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.
To efficiently generate electricity using bacteria in microbial fuel cells (MFCs), highly conductive noncorrosive materials are needed that have a high specific surface area (surface area per volume) and an open structure to avoid biofouling. Graphite brush anodes, consisting of graphite fibers wound around a conductive, but noncorrosive metal core, were examined for power production in cube (C...
متن کاملImproving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells.
In a separator electrode assembly microbial fuel cell, oxygen crossover from the cathode inhibits current generation by exoelectrogenic bacteria, resulting in poor reactor startup and performance. To determine the best approach for improving startup performance, the effect of acclimation to a low set potential (-0.2V, versus standard hydrogen electrode) was compared to startup at a higher poten...
متن کامل